Page 44 - C112213
P. 44
2
2
2
a +b >4c رگا اهنت و رگا ،تسا هریاد کی هلداعم x +y +ax +by +c=0 ینمض هطبار
2
ٔ
ٔ
2
2
و دنک یمن صخشم ار هحفص زا هطقن چیه هلداعم نیا ،دشاب a +b <4c رگا و دشاب
a b
2
2
هحفص رد ار (− ,− ) تاصتخم هب هطقن کی اهنت هلداعم نیا ،دشاب a +b =4c رگا
2 2
)؟ارچ( دنک یم صخشم
نییعت ار نآ ۀلداعم ناوت یم ،هریاد عاعش لوط و زکرم تاصتخم نتشاد اب
لوط و زکرم تاصتخم ناوت یم هریاد ۀلداعم نتشاد اب سکعرب و درک
.دروآ تسد هب ار نآ عاعش
.دشاب دحاو 3 نآ عاعش و O )0,1( نآ زکرم هک دیسیونب ار یا هریاد هلداعم ــ1
ٔ
؟تسا تروص هچ هب r عاعش و تاصتخم أدبم زکرم هب یا هریاد هلداعم ــ2
ٔ
لوط و زکرم تاصتخم ؟دشاب هریاد کی هلداعم دناوت یم ریز طباور زا کی مادک ــ3
.دینک مسر ار هریاد و دیروآ تسد هب ار اه هریاد عاعش
2
2
فلا( x +y -2x -6y-1=0
ب( x +y +2x +3y+4=0
2
2
2
ج( 2x +2y -3x +4y -2=0
2
هطقن کی M )1,1(و نآ زکرمO )-2,-1( هطقن هک دیسیونب ار یا هریاد هلداعم :لاثم
ٔ
ٔ
.دشاب نآ زا
ار نآ هلداعم ات میشاب هتشاد ار نآ عاعش لوط دیاب سپ ،میراد ار هریاد زکرم :لح
ٔ
:میروآ یم تسد هب ار OM لوط سپ OM=r هک تسا نشور .میسیونب
2
2
2
2
OM = (x M − x O ) + (y M − y O ) = ( +2 ) ++1 ) = 13
(
1
1
:دوش یم هتشون ریز تروص هب هریاد هلداعم و
2
2
2
2
(x +2 ) + (y +1 ) =13 ⇒ x + y + 4 x +2 y −=0
8
42