Page 98 - C112211
P. 98

قتشم   4 لصف

                                                                                                 7
                                                                                        2
                                                                .h′  )x) تسا بولطم ،h  )x) = (x + 3x +1)  رگا  :لاثم
                                                                                  2
                                                                                                  7
                                                        h(x) = f  (g  )x)) :هاگ نآ .g  )x) = x + 3x +1 و f )x) = x  رگا  :لح
                 h′)x) = g′)x)f  ′(g  )x)) = (2x   +3) f  ′(g  )x))
                                                                   .مینک ادیپ ار f  ′)u) هک تسا مزلا هاگ نآ g  )x) = u رگا
                 f )u)= u  ⇒ f  ′)u) = 7u  = 7(g  )x))  = 7(x + 3x +1) 6
                                                    2
                                     6
                                              6
                        7
                                                                                                    :نیاربانب
                 h′  )x) = (2x    +   3 ( (7(  )x + 3x +1) 6
                                    2
                                                                      ،درک هئارا ناوت یم زین ریز تروص هب ار قوف روتسد



                                                               :دشاب x زا یعبات u و u بسحرب یعبات f رگا
                      y = f )u) ⇒ y′= u′f  ′)u)





                                                                                            5
                                                                    .دیروآ تسد هب ار y = (  x 2  )  عبات قتشم :لاثم
                                                                                      3 x −1
                                                                                        x 2
                                                                   :اجنآ زا و y = u   :میراد   = u  ضرف اب :لح
                                                                                5
                                                                                       3 x −1
                                                              2
                                 ( x x −− 3
                                                      4
                   y′  uu =    23     1 )  x 2 . (  x 2  ) = 5 ( 3 x −2 x )(  x 2  ) 4
                           4
                        . ′ =
                         5
                                              5
                                  ( x −  3  ) 2  3 x −      ( x −1  3  ) 1  2  3 x −1  1
                                                                                             سلاک رد راک

                                                                                .دیروآ تسد هب ار ریز یاه عبات قتشم

                                                                         −  x −3  1
                 فلا( f  )x) = (x +1) (5x -1)                                               ب(  () (  ) 8
                                                                  gx =
                                 3
                             2
                                                                          2
                                                                         x + 5
                                                                                       هزاب کی یور یریذپ قتشم




                                 .دشاب ریذپ قتشم هزاب نیا هطقن ره رد ،هاگره تسا ریذپ قتشم (a , b) هزاب یور f عبات
                       قتشم a هطقن رد و دشاب ریذپ قتشم (a , b) هزاب رد f هاگره ،تسا ریذپ قتشم [a , b] هزاب یور f عبات
                                                              .دشاب هتشاد پچ قتشم b رد و تسار






                                                                                                      88
   93   94   95   96   97   98   99   100   101   102   103